Specifications for Bioretention

Material Specifications

The allowable materials to be used in bioretention area are detailed in Table G.2.

Planting Soil

The soil shall be a uniform mix, free of stones, stumps, roots or other similar objects larger than two inches. No other materials or substances shall be mixed or dumped within the bioretention area that may be harmful to plant growth, or prove a hindrance to the planting or maintenance operations. The planting soil shall be free of noxious weeds.

The planting soil shall be tested and shall meet the following criteria:

pH range	5.2 - 7.0
organic matter	1.5 - 4%
magnesium	35 lb./ac
phosphorus P ₂ O ₅	75 lb./ac
potassium K ₂ O	85 lb./ac
soluble salts	not to exceed 500 ppm

All bioretention areas shall have a minimum of one test. Each test shall consist of both the standard soil test for pH, phosphorus, and potassium and additional tests of organic matter, and soluble salts. A textural analysis is required from the site stockpiled topsoil. If topsoil is imported, then a texture analysis shall be performed for each location where the top soil was excavated.

Since different labs calibrate their testing equipment differently, all testing results shall come from the same testing facility.

Should the pH fall out of the acceptable range, it may be modified (higher) with lime or (lower) with iron sulfate plus sulfur.

Compaction

It is very important to minimize compaction of both the base of the bioretention area and the required backfill. When possible, use excavation hoes to remove original soil. If bioretention areas are excavated using a loader, the contractor should use wide track or marsh track equipment, or light equipment with turf type tires. Use of equipment with narrow tracks or narrow tires, rubber tires with large lugs, or high pressure tires will cause excessive compaction resulting in reduced infiltration rates and storage volumes and is not acceptable. Compaction will significantly contribute to design failure.

Compaction can be alleviated at the base of the bioretention facility by using a primary tilling operation such as a chisel plow, ripper, or subsoiler. These tilling operations are to refracture the soil profile through the 12 inch compaction zone. Substitute methods must be approved by the engineer. Rototillers typically do not till deep enough to reduce the effects of compaction from heavy equipment.

Rototill 2 to 3 inches of sand into the base of the bioretention facility before back filling the required sand layer. Pump any ponded water before preparing (rototilling) base.

When back filling the topsoil over the sand layer, first place 3 to 4 inches of topsoil over the sand, then rototill the sand/topsoil to create a gradation zone. Backfill the remainder of the topsoil to final grade.

When back filling the bioretention facility, place soil in lifts 12" or greater. Do not use heavy equipment within the bioretention basin. Heavy equipment can be used around the perimeter of the basin to supply soils and sand. Grade bioretention materials by hand or with light equipment such as a compact loader or a dozer/loader with marsh tracks.

Plant Installation

Mulch around individual plants only. Shredded hardwood mulch is the only accepted mulch. Pine mulch and wood chips will float and move to the perimeter of the bioretention area during a storm event and are not acceptable. Shredded mulch must be well aged (6 to 12 months) for acceptance.

The plant root ball should be planted so 1/8th of the ball is above final grade surface.

Root stock of the plant material shall be kept moist during transport and on-site storage. The diameter of the planting pit shall be at least six inches larger than the diameter of the planting ball. Set and maintain the plant straight during the entire planting process. Thoroughly water ground bed cover after installation.

Trees shall be braced using 2" X 2" stakes only as necessary and for the first growing season only. Stakes are to be equally spaced on the outside of the tree ball.

Grasses and legume seed shall be tilled into the soil to a depth of at least one inch. Grass and legume plugs shall be planted following the non-grass ground cover planting specifications.

The topsoil specifications provide enough organic material to adequately supply nutrients from natural cycling. The primary function of the bioretention structure is to improve water quality. Adding fertilizers defeats, or at a minimum, impedes this goal. Only add fertilizer if wood chips or mulch is used to amend the soil. Rototill urea fertilizer at a rate of 2 pounds per 1000 square feet.

Underdrains

Under drains to be placed on a 3'-0" wide section of filter cloth. Pipe is placed next, followed by the gravel bedding. The ends of under drain pipes not terminating in an observation well shall be capped.

The main collector pipe for underdrain systems shall be constructed at a minimum slope of 0.5%. Observation wells and/or clean-out pipes must be provided (one minimum per every 1000 square feet of surface area).

Miscellaneous

The bioretention facility may not be constructed until all contributing drainage area has been stabilized.

Table C.2 Materials Specifications for Bioretention

Parameter	Specification	Size	Notes	
Plantings	see your local NRCS Standards and Specifications guidance.	n/a	plantings are site-specific	
Planting Soil [4= deep]	sand 35 - 60% silt 30 - 55% clay 10 - 25%	n/a	USDA soil types loamy sand, sandy loam or loam	
Mulch	shredded hardwood		aged 6 months, minimum	
pea gravel diaphragm and curtain drain	pea gravel: ASTM D 448 ornamental stone: washed cobbles	pea gravel: No. 6 stone: 2" to 5"		
Geotextile	Class "C" apparent opening size (ASTM-D-4751) grab tensile strength (ASTM-D- 4632) burst strength (ASTM- D-4833)	n/a	for use as necessary beneath underdrains only	
underdrain gravel	AASHTO M-43. No. 67.	0.25" to 0.75"		
underdrain piping	ASTM D 1785 or AASHTO M-278	6" rigid schedule 40 PVC	3/8" perf. @ 6" on center, 4 holes per row; minimum of 3" of gravel over pipes; not necessary underneath pipes	
poured in place concrete (if required)	See local DOT Standards and Specs.; f=c = 3500 psi. @ 28 days, normal weight, air-entrained; re-inforcing to meet ASTM 615-60	n/a	on-site testing of poured-in-place concrete required: 28 day strength and slump test; all concrete design (cast-in-place or pre-cast) <i>not using previously approved State or local standards</i> requires design drawings sealed and approved by a licensed professional structural engineer.	
sand [1= deep]	AASHTO M-6 or ASTM C- 33	0.02" to 0.04"	Sand substitutions such as Diabase and Graystone #10 are not acceptable. No calcium carbonated or dolomitic sand substitutions are acceptable. No "rock dust" can be used for sand.	

Required Elements for Bioretention

Conveyance

Required Elements

- If runoff is delivered by a storm drain pipe or is along the main conveyance system, the filtering practice shall be designed off-line (see Appendix K).
- An overflow shall be provided within the practice to pass a percentage of the WQv to a stabilized water course. In addition, overflow for the ten-year storm shall be provided to a non-erosive outlet point (i.e., prevent downstream slope erosion).
- A flow regulator (or flow splitter diversion structure) shall be supplied to divert the WQv to the filtering practice, and allow larger flows to bypass the practice.
- Stormwater filters shall be equipped with a minimum 4" perforated pipe underdrain (6" is preferred) in a gravel layer. A permeable filter fabric shall be placed between the gravel layer and the filter media.
- Require a minimum 2' separation between the filter bottom and groundwater.

<u>Pretreatment</u>

Required Elements

- Dry or wet pretreatment shall be provided prior to filter media equivalent to at least 25% of the computed WQv. The typical method is a sedimentation basin that has a length to width ratio of 1.5:1. The Camp-Hazen equation is used to compute the required surface area for sand and organic filters requiring full sedimentation for pretreatment (WSDE, 1992) as follows:
- The required sedimentation basin area is computed using the following equation:

 $A_s = -(Qo/W) \cdot Ln (1-E)$

where:

A_s = Sedimentation basin surface area (ft²) E = sediment trap efficiency (use 90%) W = particle settling velocity (ft/sec) use 0.0004 ft/sec for imperviousness (I) ≤ 75% use 0.0033 ft/sec for I > 75% Qo = Discharge rate from basin = (WQv/24 hr/3600s) WQv=Water Quality Volume(cf)

This equation reduces to:

 $A_s = (0.066) (W_{QV}) \text{ ft } 2 \text{ for } I \le 75\%$ $A_s = (0.0081) (W_{QV}) \text{ ft } 2 \text{ for } I > 75\%$

<u>Treatment</u>

Required Elements

- The entire treatment system (including pretreatment) shall be sized to temporarily hold at least 75% of the W_{Qv} prior to filtration.
- The filter media shall consist of a medium sand (meeting ASTM C-33 concrete sand). Media used for organic filters may consist of peat/sand mix or leaf compost. Peat shall be a reed-sedge hemic peat.

• Bioretention systems shall consist of the following treatment components: A four foot deep planting soil bed, a surface mulch layer, and a six inch deep surface ponding area. Soils shall meet the design criteria outlined in Appendix H.

Landscaping

Required Elements

- A dense and vigorous vegetative cover shall be established over the contributing pervious drainage areas before runoff can be accepted into the facility.
- Landscaping is critical to the performance and function of bioretention areas. Therefore, a landscaping plan must be provided for bioretention areas.

<u>Maintenance</u>

Required Elements

• A legally binding and enforceable maintenance agreement shall be executed between the facility owner and the local review authority to ensure the following:

- Sediment shall be cleaned out of the sedimentation chamber when it accumulates to a depth of more than six inches. Vegetation within the sedimentation chamber shall be limited to a height of 18 inches. The sediment chamber outlet devices shall be cleaned/repaired when drawdown times exceed 36 hours. Trash and debris shall be removed as necessary.

- Silt/sediment shall be removed from the filter bed when the accumulation exceeds one inch. When the filtering capacity of the filter diminishes substantially (i.e., when water ponds on the surface of the filter bed for more than 48 hours), the top few inches of discolored material shall be removed and shall be replaced with fresh material. The removed sediments shall be disposed in an acceptable manner (i.e., landfill).

• A stone drop (pea gravel diaphragm) of at least six inches shall be provided at the inlet of bioretention facilities (F-6). Areas devoid of mulch shall be re-mulched on an annual basis. Dead or diseased plant material shall be replaced.

General Notes Pertinent to All Testing

- 1. For infiltration practices, a minimum field infiltration rate (f_c) of 0.5 inches per hour is required; areas yielding a lower rate preclude these practices. If the minimum f_c exceeds two inches per hour, half of the WQ_v must be treated by an upstream SMP that does allow infiltration. For F-1 and F-6 practices, no minimum infiltration rate is required if these facilities are designed with a "day-lighting" underdrain system; otherwise these facilities require a 0.5 inch per hour rate.
- 2. Number of required borings is based on the size of the proposed facility. Testing is done in two phases, (1) Initial Feasibility, and (2) Concept Design Testing.
- 3. Testing is to be conducted by a qualified professional. This professional shall either be a registered professional engineer in the State of New York, a soils scientist or geologist also licensed in the State of New York.

Initial Feasibility Testing

Feasibility testing is conducted to determine whether full-scale testing is necessary, and is meant to screen unsuitable sites, and reduce testing costs. A soil boring is not required at this stage. However, a designer or landowner may opt to engage Concept Design Borings per Table H-1 at his or her discretion, without feasibility testing.

Initial testing involves either one field test per facility, regardless of type or size, or previous testing data, such as the following:

- * septic percolation testing on-site, within 200 feet of the proposed SMP location, and on the same contour [can establish initial rate, water table and/or depth to bedrock]
- * previous written geotechnical reporting on the site location as prepared by a qualified geotechnical consultant
- * NRCS County Soil Mapping *showing an unsuitable soil group* such as a hydrologic group "D" soil in a lowlying area, or a Marlboro Clay

If the results of initial feasibility testing as determined by a qualified professional show that an infiltration rate of greater than 0.5 inches per hour is probable, then the number of *concept design test* pits shall be per the following table. An encased soil boring may be substituted for a test pit, if desired.

Type of Facility	Initial Feasibility Testing	Concept Design Testing (initial testing yields a rate greater than 0.5"/hr)	Concept Design Testing (initial testing yields a rate lower than 0.5"/hr)
I-1 (trench)	1 field percolation test, test pit not required	1 infiltration test and 1 test pit per 50' of trench	not acceptable practice
I-2 (basin)	1 field percolation test, test pit not required	1 infiltration test* and 1 test pit per 200 sf of basin area	not acceptable practice
F-1(sand filter)	1 field percolation test, test pit not required	1 infiltration test and 1 test pit per 200 sf of filter area (no underdrains required**)	underdrains required
F-6 (bioretention)	1 field percolation test, test pit not required	1 infiltration test and 1 test pit per 200 sf of filter area (no underdrains required**)	underdrains required

*feasibility test information already counts for one test location

** underdrain installation still strongly suggested

Documentation

Infiltration testing data shall be documented, which shall also include a description of the infiltration testing method, if completed. This is to ensure that the tester understands the procedure.

Test Pit/Boring Requirements

- a. excavate a test pit or dig a standard soil boring to a minimum depth of 4 feet below the proposed facility bottom elevation
- b. determine depth to groundwater table (if within 4 feet of proposed bottom) upon initial digging or drilling, and again 24 hours later
- c. conduct Standard Penetration Testing (SPT) every 2' to a depth of 4 feet below the facility bottom
- d. determine USDA or Unified Soil Classification System textures at the proposed bottom and 4 feet below the bottom of the SMP
- e. determine depth to bedrock (if within 4 feet of proposed bottom)
- f. The soil description should include all soil horizons.
- g. The location of the test pit or boring shall correspond to the SMP location; test pit/soil boring stakes are to be left in the field for inspection purposes and shall be clearly labeled as such.

Infiltration Testing Requirements

a. Install casing (solid 4-6 inch diameter, 30" length) to 24" below proposed SMP bottom (see Figure D-1).

- b. Remove any smeared soiled surfaces and provide a natural soil interface into which water may percolate. Remove all loose material from the casing. Upon the tester's discretion, a two (2) inch layer of coarse sand or fine gravel may be placed to protect the bottom from scouring and sediment. Fill casing with *clean* water to a depth of 24" and allow to pre-soak for twenty-four hours
- c. Twenty-four hours later, refill casing with another 24" of clean water and monitor water level (measured drop from the top of the casing) for 1 hour. Repeat this procedure (filling the casing each time) three additional times, for a total of four observations. Upon the tester's discretion, the final field rate may either be the average of the four observations, or the value of the last observation. The final rate shall be reported in *inches per hour*.
- d. May be done though a boring or open excavation.
- e. The location of the test shall correspond to the SMP location.
- f. Upon completion of the testing, the casings shall be immediately pulled, and the test pit shall be back-filled.

Figure D.1 Infiltration Testing Requirements

Laboratory Testing

a. Grain-size sieve analysis and hydrometer tests where appropriate may be used to determine USDA soils classification and textural analysis. Visual field inspection by a qualified professional may also be used, provided it is documented. *The use of lab testing to establish infiltration rates is prohibited*.

Bioretention Testing

All areas to be used as bioretention facilities shall be back-filled with a suitable sandy loam planting media. The borrow source of this media, which may be the same or different location from the bioretention area itself, must be tested as follows:

If the borrow area is virgin, undisturbed soil, one test is required per 200 sf of borrow area; the test consists of "grab" samples at one foot depth intervals to the bottom of the borrow area. All samples at the testing location are then mixed, and the resulting sample is then lab-tested to meet the following criteria:

a) USDA minimum textural analysis requirements: A textural analysis is required from the site stockpiled topsoil. If topsoil is imported, then a texture analysis shall be performed for each location where the top soil was excavated.

Minimum requirements: sand 35 - 60% silt 30 - 55% clay 10 - 25%

- b) The soil shall be a uniform mix, free of stones, stumps, roots or other similar objects larger than two inches.
- c) Consult the bioretention construction specifications (Appendix J) for further guidance on preparing the soil for a bioretention area.

Figure 6.19 Bioretention (F-5)