STANDARD AND SPECIFICATIONS FOR RETAINING WALLS

Definition

A structural wall constructed and located to prevent soil movement.

Purpose

To retain soil in place and prevent slope failures and movement of material down steep slopes.

Conditions Where Practice Applies

A retaining wall may be used where site constraints will not allow slope shaping and seeding to stabilize an area. Slope areas that demonstrate seepage problems or experience erosive conditions at the toe can utilize retaining walls to help stabilize these areas. Retaining walls can be built from mortared block or stone, cast-in-place concrete, railroad ties, gabions, and more recently, precast concrete modular units and segmented walls that form a gravity retaining wall (see Figure 5B.28 and 5B.29). These precast units allow for ease and quickness of installation while their granular backfill provides drainage. Selection of materials and type of wall should be based on hazard potential, load conditions, soil parameters, groundwater conditions, site constraints, and aesthetics.

Design Criteria

The design of any retaining wall structure must address the aspects of foundation bearing capacity, sliding, overturning, drainage and loading systems. These are complex systems and all but the smallest retaining walls should be designed by a licensed engineer.

Bearing Capacity – A minimum factor of safety of 1.5 should be maintained as the ratio of the ultimate bearing capacity to the designed unit loading. Spread footers and other methods may be used to meet factor requirements.

Sliding – A minimum factor of 2.0 should be maintained against sliding. This factor can be reduced to 1.5 when passive pressures on the front of the wall are ignored.

Overturning – A minimum factor of safety of 1.5 should be used as the ratio of the resisting moment (that which tends to keep the wall in place) to the overturning moment.

Drainage – Unless adequate provisions are made to control both surface and groundwater behind the retaining wall, a substantial increase in active pressures tending to slide or overturn the wall will result. When backfill is sloped down to a retaining wall, surface drainage should be provided. Drainage systems with adequate outlets should be provided behind retaining walls that are placed in cohesive soils. Drains should be graded or protected by filters so soil material will not move through the drainfill.

Load systems – Several different loads or combination of loads need to be considered when designing a retaining wall. The minimum load is the level backfill that the wall is being constructed to retain. Its unit weight will vary depending on its composition.

Additional loads such as line loads, surcharge loads, or slope fills, will add to make the composite design load system for the wall.

Construction Specifications

Concrete Walls

- 1. Foundation will be prepared by excavating to the lines and grades shown on the drawings and removing all objectionable material.
- 2. Subgrade will be compacted and kept moist at least 2 hours prior to placement of concrete.
- 3. Steel reinforcing will be in accordance with the schedule on the drawings and kept free of rust, scale, or dirt.
- 4. Exposed edges will be chamfered ³/₄ inches.
- 5. Drainfill will meet the gradations shown on the drawings.

- 6. Weep holes will be provided as drain outlets as shown on the drawings.
- 7. Concrete will be poured and cured in accordance with American Concrete Institute (ACI) specifications.

Precast Units

- 1. Foundation will be prepared by excavating to the lines and grades shown on the drawings.
- 2. Subgrade will be compacted and trimmed to receive the leveling beam.
- 3. Precast units will be placed in accordance with the manufacturers recommendation.
- 4. Granular fill placed in the precast bins shall be placed in 3-foot lifts, leveled off and compacted with a plate vibrator.

Segmented Walls

- 1. Foundation will be prepared by excavating to the lines and grades shown on the drawings.
- 2. Sub-grade will be compacted and screeded to form the base for the first course of wall units.
- Units will be placed in accordance with the manufacturers recommendations, with each succeeding lift anchored and pinned as specified.

4. Granular fill will be placed behind the segmented wall to provide drainage. It shall be compacted with a plate vibrator. A drainage outlet will be provided as specified on the construction drawings.

Gabions

- 1. Foundation will be prepared by excavating to the lines and grades shown on the drawings.
- 2. Subgrade will be compacted and leveled to receive first layer of gabions. The first row will be keyed into the existing grade at the toe, a minimum of 1.5 feet.
- 3. Gabions will be placed according to the manufacturers recommendations.
- 4. Gabions will be filled with stone or crushed rock from 4 to 8 inches in diameter.
- 5. In corrosive environments, gabion wire should be coated with Poly Vinyl Chloride (PVC).

Maintenance

Once in place, a retaining wall should require little maintenance. They should be inspected annually for signs of tipping, clogged drains, or soil subsidence. If such conditions exist, they should be corrected immediately.

Figure 5B.28 Retaining Wall Examples

Precast Units

Figure 5B.29 Segmented Retaining Wall

