STANDARD AND SPECIFICATIONS FOR DIVERSION

Definition

A drainage way of parabolic or trapezoidal cross-section with a supporting ridge on the lower side that is constructed across the slope.

Purpose

The purpose of a diversion is to intercept and convey runoff to stable outlets at non-erosive velocities.

Conditions Where Practice Applies

Diversions are used where:

1. Runoff from higher areas has potential for damaging properties, causing erosion, or interfering with, or preventing the establishment of, vegetation on lower areas.

2. Surface and/or shallow subsurface flow is damaging sloping upland.

3. The length of slopes needs to be reduced so that soil loss will be kept to a minimum.

Diversions are only applicable below stabilized or protected areas. Avoid establishment on slopes greater than fifteen percent. Diversions should be used with caution on soils subject to slippage. Construction of diversions shall be in compliance with state drainage and water laws.

Design Criteria

Location

Diversion location shall be determined by considering

outlet conditions, topography, land use, soil type, length of slope, seep planes (when seepage is a problem), and the development layout.

Capacity

Peak rates of runoff values used in determining the capacity requirements shall be computed by TR-55, Urban Hydrology for Small Watersheds, or other appropriate methods.

The constructed diversion shall have capacity to carry, as a minimum, the peak discharge from a ten-year frequency rainfall event with freeboard of not less than 0.3 feet.

Diversions designed to protect homes, schools, industrial buildings, roads, parking lots, and comparable high-risk areas, and those designed to function in connection with other structures, shall have sufficient capacity to carry peak runoff expected from a storm frequency consistent with the hazard involved.

Cross Section

The diversion channel shall be parabolic or trapezoidal in shape. Parabolic Diversion design charts are provided in Figures 5B.2 through 5B.7 on pages 5B.4 to 5B.9. The diversion shall be designed to have stable side slopes. The side slopes shall not be steeper than 2:1 and shall be flat enough to ensure ease of maintenance of the diversion and its protective vegetative cover.

The ridge shall have a minimum width of four feet at the design water elevation; a minimum of 0.3 feet freeboard and a reasonable settlement factor shall be provided.

Velocity and Grade

The permissible velocity for the specified method of stabilization will determine the maximum grade. Maximum permissible velocities of flow for the stated conditions of stabilization shall be as shown in Table 5B.1 on page 5B.2 of this standard.

Diversions are not usually applicable below high sediment producing areas unless land treatment practices or structural measures, designed to prevent damaging accumulations of sediment in the channels, are installed with, or before, the diversions.

Outlets

Each diversion must have an adequate outlet. The outlet may be a grassed waterway, vegetated or paved area, grade stabilization structure, stable watercourse, or subsurface drain outlet. In all cases, the outlet must convey runoff to a point where outflow will not cause damage. Vegetated outlets shall be installed before diversion construction, if needed, to ensure establishment of vegetative cover in the outlet channel.

The design elevation of the water surface in the diversion shall not be lower than the design elevation of the water surface in the outlet at their junction when both are operating at design flow. **Stabilization**

Diversions shall be stabilized in accordance with the following tables.

Construction Specifications

See Figure 5B.1 on page 5B.3 for details.

Table 5B.1Diversion Maximum Permissible Design Velocities

Soil Texture	Retardance and Cover	Permissible Velocity (ft / second) for Selected Channel Vegetation
Sand, Silt, Sandy loam, silty loam, loamy sand (ML, SM, SP, SW)	C-Kentucky 31 tall fescue and Kentucky bluegrass	3.0
	D-Annuals ¹ Small grain (rye, oats, barley, millet) Ryegrass	2.5
Silty clay loam, Sandy clay loam (ML-CL, SC)	C-Kentucky 31 tall fescue and Kentucky bluegrass	4.0
	D-Annuals ¹ Small grain (rye, oats, barley, millet) Ryegrass	3.5
Clay (CL)	C-Kentucky 31 tall fescue and Kentucky bluegrass	5.0
	D-Annuals ¹ Small grain (rye, oats, barley, millet) Ryegrass	4.0

¹Annuals—Use only as temporary protection until permanent vegetation is established.

Table 5B.2—Retardance Factors for Various Grasses and Legumes

Retardance	Cover	Condition
А	Reed canarygrass	Excellent stand, tall (average 36 inches)
В	Smooth bromegrass Tall fescue Grass-legume mixture—Timothy, smooth bromegrass, or Or-	Good stand, mowed (average 12 to 15 inches) Good stand, unmowed (average 18 inches)
	chard grass with birdsfoot trefoil	Good stand, uncut (average 20 inches)
	Tall fescue, with birdsfoot trefoil or ladino clover	Good stand, uncut (average 18 inches)
С	Redtop Grass-legume mixture—summer (Orchard grass, redtop, Annual	Good stand, headed (15 to 20 inches)
	ryegrass, and ladino or white clover) Kentucky bluegrass	Good stand, uncut (6 to 8 inches) Good stand, headed (6 to 12 inches)
D	Red fescue Grass-legume mixture—fall, spring (Orchard grass, redtop, An-	Good stand, headed (12 to 18 inches)
	nual ryegrass, and white or ladino clover)	Good stand, uncut (4 to 5 inches)

Figure 5B.1 Diversion

Figure 5B.2 Parabolic Diversion Design, Without Freeboard-1 (USDA - NRCS)

υ ø 50 RETARDANCE - D ö 8°8 7'8 **6.**0 γ2 - % . P ----3.3 GRADE. 5 -2 2 5.5 22222 ¥2 . P FREEBOARD 5 • 2238220 Soil With Retardance "D" n Retardance "C" - 5.0 42 ~~~~~~~~~~~ Ω 5 H 385388328755 - 1.-5 V2 ÷ 5 H WITHOUT Based on 4.0 of the 22 . P 2 on Permissible Velocity Top Width, Depth & V2 B H 1222333333333222 Depth & V2 3.5 ŝ DESIGN, ٠ P L' F 3.0 42 . Q Based o 5 -3398775555598888888855566559 a DIVERSION 20.00 2°2 72 ŗ . Р 5 ÷ V2 2.0 . a S ň OLI t 5 AB Ê A

Figure 5B.3 Parabolic Diversion Design, Without Freeboard-2 (USDA - NRCS)

B C					
4CE - D - 0.75		6 *0	V2	××××××××××××××××××××××××××××××××××××××	
ARDAN DE,%		۰ ^۲ ۸	1	26255555555555555555555555555555555555	
RE T/ GRAI		5.5	V2	、 、 、 、 、 、 、 、 、 、 、 、 、 、	
0		- TA	T D	22222222222222222222222222222222222222	
AR	"D"	0	V2	488899999999999 48899999999999	
E B(rdance.	- LV	I D	12273288283898888 23233888888 232388888888888888888	
FRE	With Retar	With Retar	- 4.5	D V2	00000000000000000000000000000000000000
L I	Soil	۲'n	۴	EEB848888888888888888888888888888888888	
ITHO	ty of the 2 Based or	V1 = 4.0	T D V2	28555888888888888888888888888888888888	
≥	eloci h & V	10	V2		
IGN,	setble V th, Dept	V1 - 3	T D	286555555555555555555555555555555555555	
DES	d on Permit	V1 - 3.0	r D V2	00000000000000000000000000000000000000	
ERSION	V1 Based	V1 Base	V1 - 2.5	T D V2	
DIVE		= 2°0	D V2		
LIC		۲'n	۴	828528528528528523855	
RABO		ø	cfs	ਸ਼ <i>ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਫ਼ਫ਼ਫ਼</i> ਫ਼	
ΡA					

Figure 5B.4 Parabolic Diversion Design, Without Freeboard-3 (USDA - NRCS)

BC																													
RDANCE - D E, % - 1.0		1 = 6.0	r D V2													12667	2 2 2 2 2	2.6 5.8	1 2.6 5.8	5 2.6 5.8	6 2.5 6.0	7 2.5 5.9	5 2°5 5°9	9 2.5 6.0	0 2.5 6.0	2 2.5 5.1	1.0 2.2 0	8 2.5 5.2	0 2.5 6.1
RE TAF		5.	12 1											< 1	2.2	2.2			22.2	5.5	5.5 10	5.7	2.6 1	2.6	2.0	0.0		2.6	5.7 3
		~	a											-			-	-	17			-	•	-		-	27	272	~
RD		٢٨	4														12		16	17 2	19 2	50	12	22	2	50	5 5	5	34 2
AO	u u u	2.0	٧2								L.1				1.0	10			20.0	5	5.1	3	2.2	3				5	5.1
m	Pour	•	٩								2	~	~	2		20			2	2.2	2.2	2.	2	2	2	2		2	2
ш	arda	2	۴								\$	3:	33	12	25	14	10	18	202	2	22	24	32	50	2G	25	28	5	42
R	h Ret	4.5	V2					4.2	3	6.1	<u>_</u>	1.1	·					1.5	1.6	4.6	4.6	16	1.0	9.1			1.7	1.7	1.7
	Mit	•	9					2.0	2	2.0	20	~	2.0	2.	1.0	10			1	1.0	3	1	1.9	1		5.0	10.1	6.	
	011 Reta	L'	64					0	2	ទ		22	27	32	25	12	18	200	72	C:	27	8	2	5	22	'n	53	5	8
D0	the S d on	0.1	٧2			3.5		5	3.8	3.8	8.0	6.0	5.0	5.0	2.0			0.0	0	0.1	1.0		0.1	0.1			10	6.1	1.0
E	ofase	•	9			1.8	8.1	1.8	1.8	1.7	2.1	1		1				1	1	1.7	5	1	-	1				1	1
5	V2 B	5	۲			æ	6 6	21	12	7	5	25	1	48	56	20	3.5	20	1	ŝ	ŝ	8	2	42	30	50	35	5	99
5	Veloc th &	3.5	V2		0.0	1			3	3	2	2	-	22					1	3	3.3	3	3.4	7.0	1.0			3.4	3.li
Z	Dep	•			1.6	1.6	5.4	1.5	1.5	1.2	3	3	1	2	2		10	1.4	1	5.2	3	-	5	3	2		1.5	12	5
0	th,	L'	۲		æ 0	Ħ	21	22	ĥ	18	ŝ	21	3	20	200	2.2	ž	28	3	77	5	5	3	5	2	35	222	5	8
E S	Wid.	0	25	5.6	2.0	S.8	8.0		5.8	2.8	5.8	5.8	5.9	5.0	2.0				0.0	5.9	2.9	5.9	5.0	5.9	5.0	5.0			
	Top P	?	6	v.	viv	ŝ	-7'		-	7.	-7	7.	7	7-	-		1-		-	7-1	1.4	-7:	-		-			1	
2	op	71	F	e e	~ [12	51	12	28	22	24	29	58	53	22	29		1	ភ្ល	5	8	3	5	\$	22	2	20		
õ	scq	5	0	0.7	37	~			~	~	~3	~	~	~	N					~	~	~	×2						
S	2	~	2	20	20	5	~	2.	5	ŝ	ŝ	ņ	~	2	20	20	2.0	2.	27	5	3	r,	ņ						
		5	F	1 1 1	11	6	~	1 6	0	5	5	8			25	10	2.9	10	10	1	11	20	22						
>				2	~~ ~~	5	~ (\/	~~~	5	ŝ	5	ຕ. ທາ	5	 	~	Λч Λυ		0 -	- [-	. 07)	æ	67	5						
ā		2.0	V2		i-	2	-		1	-	-	-	-	i	-	1	-												
0		1	9	22		12	3,		4	2	3	-	-	-		-													
Ē		A	F	28	6.6	35	5	31	197	ŝ	5	3	8	22	62	100	2												
BO		C*	cfs	52 8	Ϋ́	28	3	38	22	8	65	2	2	8	8					3	8	170	180	190	200	220	242	88	ŝ
ARA																													

Figure 5B.5 Parabolic Diversion Design, Without Freeboard-4 (USDA - NRCS)

RETARDANCE - D & C GRADE, % - 1.5		•5 V1 = 6.0	V2 T D V2	52 52 52 52 52 52 52 52 53 54 55 55 55 55 55 55 55 55 56 57 56 57 56 57 56 57 57 56 57 <trr> 57 </trr>
RD		V1 - 5	1	8 6 0 1 1 1 1 1 0 0 2 8 8 9 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0
EBOA	V1 Based on Permissible Velocity of the Soil With Fetardance "D" Top Width, Depth & V2 Based on Fetardance "C"	V1 = 5.0	T D V2	
T FRE		V1 = 4.5	T D V2	8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ITHOU		V1 - 4.0	T D V2	6 1.5 3.6 7 1.5 1.5 3.6 7 1.5 1.5 1.5 7 1.5 1.5 1.5 7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
IGN, W		V1 - 3.5	T D V2	8 8 1.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
N DES		V1 = 3.0	T D V2	8 1.2 2.4 10 1.2 2.4 17 1.1 2.6 20 1.2 2.6 20 1.2 2.6 20 1.2 2.6 20 1.1 2.6 33 1.1 2.7 33 1.1 2.7 33 1.1 2.7 73 1.1 2.7 74 1.1 2.7 75 1.1 2.7 7
ERSIO		V1 = 2.5	T D V2	11 1.1 1.9 15 1.0 1.9 26 1.0 1.9 33 1.0 2.0 33 1.0 2.0 35 1.0 2.0
IC DIV		V1 = 2.0	T D V2	23 23 23 23 23 23 23 23 23 23 23 23 23 2
PARABOL		ø	cfs	ਸ਼ <i>੪ਲ਼ਖ਼ਸ਼</i> ਫ਼ਸ਼ <i>ਖ਼ਸ਼</i> ਫ਼ਲ਼ਖ਼ਖ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ੑਫ਼ਫ਼ਫ਼ਖ਼ਖ਼ਲ਼ਫ਼ਫ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼

Figure 5B.6 Parabolic Diversion Design, Without Freeboard-5 (USDA - NRCS)

ETARDANCE - D B (RADE, % - 2.0		V1 = 6.0	TDV2	22 23 24 24 25 25 25 25 25 25 25 25 25 25
RD 6		V1 = 5.5	T D V2	~ 8 ~ 8 I I I I I I I I I I I I I I I I
EBOAF	ardance "D"	V1 = 5.0	T D V2	8 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
T FRE	il With Retu tetardance "(V1 = 4.5	T D V2	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ITHOU	ty of the So 2 based on F	V1 = 4.0	T D V2	7 1.2 1.0 1.2 3.6 11 1.2 3.7 11 1.2 3.7 11 1.2 3.6 11 1.2 3.6 11 1.2 3.6 11 1.2 3.9 22 1.2 3.9 23 1.2 1.0 24 1.2 1.0 55 1.
IGN, W	sible Veloci h, Depth & V	V1 - 3.5	T D V2	7 1.2 2.9 15 1.1 2.0 26 1.1 2.0 26 1.1 2.0 26 1.1 2.0 26 1.1 2.0 26 1.1 2.0 27 1.1 2.0 26 1.1 2.0 26 1.1 2.0 27 1.1 2.0 28 1.1 3.0 28 1.1 3.0 29 1.1 3.0 20 1.1 3.0 2
N DES	ed on Peruds Top Widt	V1 = 3.0	T D V2	9 1.0 2.5 9 1.5 9 1.5
ERSIO	Vl Fas	V1 - 2.5	T D V2	13 0.9 1.9 21 0.9 1.9 28 0.9 1.9 29 0.9 1.9 29 0.9 1.9 20 0.9 2.0 20 0.9 2.0 20 0.9 2.0 20 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
IC DIV		V1 = 2.0	T D V2	21 0.8 1.3 28 0.8 1.3 35 0.8 1.3 55 0.8 1.3 55 0.8 1.4 66 0.8 1.4 88 0.8 1.4 88 0.8 1.4 95 0.8 1.4 95 0.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
ARABOL		0	cfe	<i>ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਲ਼ਫ਼ਲ਼ਫ਼ਸ਼</i> ਫ਼ਫ਼ਫ਼ਗ਼ਗ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਫ਼ਖ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼

Figure 5B.7 Parabolic Diversion Design, Without Freeboard-6 (USDA - NRCS)